If log7 – log2 + log16 – 2log3 – log(7/45) = 1 + log n find n.
Answers
The value of n is 4.
Explanation:
log7 – log2 + log16 – 2log3 – log(7/45) = 1 + log n
log 7 .16 /2 ( 7 ÷ 45) ^9 = 1 + log n
log 5 (8) = 1 + log n
log 40 - log n = 1
log ( 40 / n ) = 1
log 10 (40 / n ) = 1 => 40 / n = 10
If base is 10 then,
n = 4
Hence the value of n is 4.
Also learn more
Find the value of n= log 0.2 with base 10/log 0.12 with base 10?
https://brainly.in/question/34803
=The value of n is 4
=>log 7 - log 2 + log 16 - 2log 3 - =>log 745 = 1 + log n
So,
=>log 7 - log 2 + log 16 - 2log 3 - (
log 7 - log 45 ) = 1 + log n
=>( log ab = log a - log b )
=>log 7 - log 2 + log 16 - log 32 -
=> log 7 + log 45 = 1 + log n
=>log ab = b log a
=>log 7 + log 16 + log 45 - log 2 -
log 9 - log 7 = 1 + log n
=>log 7 × 16 ×452 × 9 × 7 = log 10
+ log n
=>log ab = log a + log b And log 10
= 1
=>log 7 × 16 ×452 × 9 × 7 = log 10n
=> log 40 = log 10 n
=>10n = 40
=> n= 4