Math, asked by modi486, 1 year ago

if m cotA = n find value m sinA - n cosA/ n cosA + m sinA


AdityaVishwa: msinA - ncosA/ncosA + msinA putting the value of sinA and cosA m×m - n×n/n×n + m×m = msquare - nsquare/nsquare + msquare after solving is we can get it
modi486: solve it

Answers

Answered by kohlisuraj80
1

see i will guide u


take cot A =n/m and then

expand  all the terms in for of p/b h/b etc. etc. and put the values u will get the answer


hope u fr happy nd my explanation helped you


Answered by isyllus
8

Answer:

\dfrac{m\sin A-n\cos A}{m\sin A+n\cos A}=\dfrac{m^2-n^2}{m^2+n^2}

Step-by-step explanation:

Given: m cot A = n

To Determine: \dfrac{m\sin A-n\cos A}{n\cos A+m\sin A}

Calculation:

m\cot A=n

\dfrac{\cos A}{\sin A}=\dfrac{n}{m}

Now multiply both side by n/m

\dfrac{n\cos A}{m\sin A}=\dfrac{n^2}{m^2}

Using Componendo and Dividendo

\dfrac{n\cos A-m\sin A}{n\cos A+m\sin A}=\dfrac{n^2-m^2}{n^2+m^2}

Taking minus sign from numerator and flip the term

\dfrac{m\sin A-n\cos A}{m\sin A+n\cos A}=\dfrac{m^2-n^2}{m^2+n^2}


Similar questions