Math, asked by kartiknikumbh11, 9 months ago

if matrix A=[ 0 0 0 1] then the matrix give n by B=I+A+A^2+... +A^k is​

Attachments:

Answers

Answered by Vanjaresanjay88
1

Answer:

hii hello how are you

you are in which std

Answered by pulakmath007
7

\displaystyle\huge\red{\underline{\underline{Solution}}}

 A   = \displaystyle \: \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix}

Now

 {A}^{2}

=  {A}\times   A

= \displaystyle \: \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix}

= \begin{pmatrix} 0 + 0 & 0 + 0\\ 0 + 0 & 1 + 0 \end{pmatrix}

=  \displaystyle\begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix}

So

 {A}^{2}   =  {A}

So

 {A}^{3}   =  {A}^{2}  \times   {A}^{}   ={A}\times   {A}^{}   = {A}^{2} = {A}

Similarly

{A}^{k} = {A}

HENCE

B = I + A +  {A}^{2}  +  {A}^{3}  + ...... +  {A}^{k}

 = I + A +  {A}+  {A} + ...... +  {A}

 =  I + k \: A

=  \displaystyle\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} + k \displaystyle\begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix}

=  \displaystyle\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} +  \displaystyle\begin{pmatrix} 0 & 0\\ 0 & k \end{pmatrix}

=  \displaystyle\begin{pmatrix} 1 & 0\\ 0 &  k + 1 \end{pmatrix}

Similar questions