Math, asked by AdrijaMukherjee780, 1 year ago

If n(A) = 300, n(A∪B) = 500, n(A∩B) = 50 and n(B′) = 350, find n(B) and n(U).

Answers

Answered by gadakhsanket
19

Dear Student,

◆ Answer -

n(B) = 250

n(U) = 600

● Explanation -

Applying sets formulae,

n(A∪B) = n(A) + n(B) - n(A∩B)

500 = 300 + n(B) - 50

n(B) = 500 - 250

n(B) = 250

Also, to find n(U) -

n(U) = n(B) + n(B)

n(U) = 250 + 350

n(U) = 600

Best luck dear. Hope this helps you...

Answered by pulakmath007
5

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1. For two non empty sets A and B

 \sf{n(A \cup \: B) = n(A) +  n(B) -  n(A \cap B) \:  \: }

2.

  \sf{n( B ') + n(B) =  n(U) }

GIVEN

  • n(A) = 300
  • n(A∪B) = 500
  • n(A∩B) = 50
  • n(B′) = 350

TO DETERMINE

  • n(B)
  • n(U)

CALCULATION

ANSWER TO QUESTION : 1

For two non empty sets A and B

 \sf{n(A \cup \: B) = n(A) +  n(B) -  n(A \cap B) \:  \: }

 \implies \sf{500= 300+  n(B) -  50 \:  \: }

 \implies \sf{ n(B)  = 500 - 300 +  50 \:  \: }

 \implies \sf{ n(B)  = 250 \:  \: }

ANSWER TO QUESTION : 2

We know that

  \sf{  n(U) = \: n(B)  +  n( B ')\: }

  \implies \sf{  n(U) = \: 250  + 350\: }

  \implies \sf{  n(U) = \: 600\: }

RESULT

1. \:  \:  \:  \:  \:  \sf{ n(B)  = 250 \:  \: }

2. \:  \:   \:  \:  \:  \sf{  n(U) = \: 600\: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Represent all possible one-one functions from the set A = {1, 2} to the set B = {3,4,5) using arrow diagram.

https://brainly.in/question/22321917

Similar questions