Math, asked by Divijyesta9773, 1 year ago

If n

a.m are inserted between 20 and 80 such that the rayio of first mean to the last mean is 1:3 then find the value of n

Answers

Answered by ExoticExplorer
57
★ ARITHMETIC MEAN 

———————————

Let A_{1},  A_{2},  A_{3}, .....A_{n} be n arithmetic means between 20 and 80
And let d be the common difference between the terms of the A.P.


So, 
d = \frac{b - a}{n + 1}
          
=  \frac{80 - 20}{n + 1}
         
=  \frac{60}{n + 1}

Now, A
= 20 + d

              = 20 +  \frac{60}{n + 1}
              
= 20(\frac{n + 4}{n + 1})

And, 
A_{n} = 20 + d
                 
= 20 +  \frac{60n}{n + 1}
                  
= 20(\frac{4n + 1}{n + 1})

Thus, 
\frac{ A_{1} }{ A_{n} } =  \frac{1}{3}

⇒ 
 \frac{20(\frac{n + 4}{n + 1})}{20 (\frac{4n + 1}{n + 1})}     = \frac{1}{3}

\frac{n + 4}{4n + 1}  = \frac{1}{3}
4n + 1 = 3n + 12
n = 11

∴ The value of n is 11.
 

———————————


Regards

#ExoticExplorer
Answered by vysh89
25
  • hope it helps you.......
Attachments:
Similar questions