Math, asked by angelpriya88, 4 months ago

If ¼ of a number is added to ⅓ of that number,the result is 15 greater than half of that number.Find the number.​

Answers

Answered by Anonymous
48

GIVEN :-

  • 1/4 of a number is added to 1/3 of that number , the result is 15 greater than 1/2 of the number.

 \\

TO FIND :-

  • The number.

 \\

SOLUTION :-

Let the number be 'y'.

So,

1/4 of y is added to 1/3 of y , result is 15 greater than 1/2 of y.

 \\  \implies \sf \:  \dfrac{1}{4} (y) +  \dfrac{1}{3} (y) = 15 +  \dfrac{1}{2} (y) \\  \\  \implies\sf \:  \dfrac{y}{4}  +  \dfrac{y}{3}  = 15 +  \dfrac{y}{2}  \\  \\  \implies\sf \:  \dfrac{y}{4}  +  \dfrac{y}{3}  -  \dfrac{y}{2}  = 15 \\  \\  \implies\sf \:  \dfrac{3(y) + 4(y)  -  6(y)}{12}  = 15 \\  \\  \implies\sf \:  \dfrac{3y + 4y  -  6y}{12} =  15 \\   \\  \implies\sf \:  \dfrac{y}{12}  = 15 \\  \\   \implies\sf \: y  = 15 \times 12 \\  \\  \implies\boxed{ \sf \: y =180}\\  \\

Hence , the number is 180.

 \\

VERIFICATION :-

 \\   \longmapsto\sf \:  \dfrac{180}{4} +  \dfrac{180}{3}   = 15 +  \dfrac{180}{2}  \\  \\  \longmapsto\sf \: 45 + 60 = 15 + 90 \\  \\  \longmapsto\sf \: 105 = 105 \:  \:  \:  \:  \:  \:  \:  \:  \: (verified)

Similar questions