Math, asked by parvagarwal255, 9 months ago

If one zero of the polynomial (k2+1) x2+16x +8k is reciprocal of the other then k is equal to

Answers

Answered by shadowsabers03
5

The polynomial is,

\displaystyle\longrightarrow \sf{p(x)=(k^2+1)x^2+16x+8k}

Here,

  • \displaystyle\sf {a=k^2+1}

  • \displaystyle\sf {b=16}

  • \displaystyle\sf {c=8k}

One zero of this polynomial is reciprocal to the other.

Let the zeroes be \displaystyle\sf {\alpha} and \displaystyle\sf {\dfrac {1}{\alpha}.}

Then, product of zeroes,

\displaystyle\longrightarrow\sf{\alpha\times\dfrac {1}{\alpha}=\dfrac {c}{a}}

\displaystyle\longrightarrow\sf{1=\dfrac {8k}{k^2+1}}

\displaystyle\longrightarrow\sf{k^2+1=8k}

\displaystyle\longrightarrow\sf{k^2-8k+1=0}

Solving this quadratic equation,

\displaystyle\longrightarrow\sf{k=\dfrac {8\pm\sqrt{(-8)^2-4\times 1\times 1}}{2\times 1}}

\displaystyle\longrightarrow\sf{k=\dfrac {8\pm\sqrt{64-4}}{2}}

\displaystyle\longrightarrow\sf{k=\dfrac {8\pm\sqrt{60}}{2}}

\displaystyle\longrightarrow\sf{k=\dfrac {8\pm2\sqrt{15}}{2}}

\displaystyle\longrightarrow\underline {\underline {\sf{k=4\pm\sqrt{15}}}}

Similar questions