if p (1,2) Q(1,0 R(0,1) are the mid points of the sides Ab bc and ca respectively of a triangle Abc find the cordinates of the vertices A,B,C and hence find the are of a triangle ABC
Answers
Answer:
Vertices of triangle are A(0,3), B(2,1) and C(0,-1) and area is 4 sq units
Step-by-step explanation:
Given P(1,2), Q(1,0) and R(0,1) are the mid points of the sides AB, BC and CA respectively of a triangle ABC we have to find the coordinates of the vertices A,B,C
Let the coordinates of A, B and C are respectively. Now,
Coordinates of Mid point of AB is
⇒ ,
⇒ , → (1)
Similarly,
Coordinates of Mid point of BC is
⇒ ,
⇒ , → (2)
Coordinates of Mid point of AC is
⇒ ,
⇒ , → (3)
Now, solving eq (1),(2) and (3) we get
Hence, vertices of triangle are A(0,3), B(2,1) and C(0,-1)
Now, Area of triangle=
=
Answer:
Vertices of triangle are A(0,3), B(2,1) and C(0,-1) and area is 4 sq units
Step-by-step explanation:
Given P(1,2), Q(1,0) and R(0,1) are the mid points of the sides AB, BC and CA respectively of a triangle ABC we have to find the coordinates of the vertices A,B,C
Let the coordinates of A, B and C are (a_{1},a_{2}), (b_{1},b_{2}) ,(c_{1},c_{2})(a
1
,a
2
),(b
1
,b
2
),(c
1
,c
2
) respectively. Now,
Coordinates of Mid point of AB is [\frac{(a_{1}+b_{1})}{2}, \frac{(a_{2}+b_{2})}{2}]=P(1,2)[
2
(a
1
+b
1
)
,
2
(a
2
+b
2
)
]=P(1,2)
⇒ \frac{(a_{1}+b_{1})}{2}=1
2
(a
1
+b
1
)
=1 , \frac{(a_{2}+b_{2})}{2}=2
2
(a
2
+b
2
)
=2
⇒ a_{1}+b_{1}=2a
1
+b
1
=2 , a_{2}+b_{2}=4a
2
+b
2
=4 → (1)
Similarly,
Coordinates of Mid point of BC is [\frac{(b_{1}+c_{1})}{2}, \frac{(b_{2}+c_{2})}{2}]=P(1,0)[
2
(b
1
+c
1
)
,
2
(b
2
+c
2
)
]=P(1,0)
⇒ \frac{(b_{1}+c_{1})}{2}=1
2
(b
1
+c
1
)
=1 , \frac{(b_{2}+c_{2})}{2}=0
2
(b
2
+c
2
)
=0
⇒ b_{1}+c_{1}=2b
1
+c
1
=2 , b_{2}+c_{2}=0b
2
+c
2
=0 → (2)
Coordinates of Mid point of AC is [\frac{(a_{1}+c_{1})}{2}, \frac{(a_{2}+c_{2})}{2}]=P(0,1)[
2
(a
1
+c
1
)
,
2
(a
2
+c
2
)
]=P(0,1)
⇒ \frac{(a_{1}+c_{1})}{2}=0
2
(a
1
+c
1
)
=0 , \frac{(a_{2}+c_{2})}{2}=1
2
(a
2
+c
2
)
=1
⇒ a_{1}+c_{1}=0a
1
+c
1
=0 , a_{2}+c_{2}=2a
2
+c
2
=2 → (3)
Now, solving eq (1),(2) and (3) we get
a_{1}=0, a_{2}=3, b_{1}=2, b_{2}=1, c_{1}=0, c_{2}=-1a
1
=0,a
2
=3,b
1
=2,b
2
=1,c
1
=0,c
2
=−1
Hence, vertices of triangle are A(0,3), B(2,1) and C(0,-1)
Now, Area of triangle=
\frac{1}{2}\left |a_{1}(b_{2}-c_{2})+b_{1}(c_{2}-a_{2})+c_{1}(a_{2}-b_{1})\right |
2
1
∣a
1
(b
2
−c
2
)+b
1
(c
2
−a
2
)+c
1
(a
2
−b
1
)∣
= \frac{1}{2}\left |2(-1-3)\right |=4 squnits
2
1
∣2(−1−3)∣=4squnits