Math, asked by hhh1176, 1 year ago

If p+1/p=√3,provr that p^3+1/p^3=0​

Answers

Answered by abdul9838
6

\small \bf \pink{hey \: mate \: here \: is \: ur \: ans} \\  \\ \small \bf \pink{ \huge \: solution} \\  \\ \small \bf \pink{p +  \frac{1}{p} =  \sqrt{3}  } \\  \\ \small \bf \pink{now} \\  \\ \small \bf \pink{p^{3}  +  \frac{1}{ {p}^{3} } = 0 } \\  \\ \small \bf \pink{given \: that} \\  \\ \small \bf \pink{p +  \frac{1}{p}  =  \sqrt{3} } \\  \\ \small \bf \pink{cubing \: on \: both \: sides} \\  \\ \small \bf \pink{ {p}^{3}  +  \frac{1}{ {p}^{3} } + 3 \times p \times  \frac{1}{p}(p +  \frac{1}{ p}  ) =  { \sqrt{3} }^{3}  } \\  \\ \small \bf \pink{ {p}^{3}  +  \frac{1}{ {p}^{3} }  + 3 \times 1( \sqrt{3}) = 3 \sqrt{3}  } \\  \\ \small \bf \pink{ {p}^{3} +  \frac{1}{ {p}^{3} }   + 3 \sqrt{3} = 3 \sqrt{3}  } \\  \\ \small \bf \pink{ {p}^{3} +  \frac{1}{ {p}^{3} } = 3 \sqrt{3} - 3 \sqrt{3}    } \\  \\ \small \bf \pink{ {p}^{3} +  \frac{1}{ {p}^{3} }  = 0 \:  \:  \: proved }

Similar questions
Math, 1 year ago