English, asked by Uzmakhatoon, 1 year ago

if p=2-√5/2+√5 and q=2+√5/2-√5 find the value of p + q

Answers

Answered by Anonymous
37
Hey\:there
______________________________

p = ( 2 – √5 ) / ( 2 + √5 )

= ( 2 – √5 ) / ( 2 + √5 ) × ( 2 – √5 ) / ( 2 – √5 )

= ( 2 – √5 )² / ( 2² – √5² )

= ( 4 – 4√5 + 5 ) / ( 4 – 5 )

= 9 – 4√5
______________________________

q = ( 2 + √5 ) / ( 2 – √5 )

= ( 2 + √5 ) / ( 2 – √5 ) × ( 2 + √5 ) / ( 2 + √5 )

= ( 2 + √5 )² / ( 2² – √5² )

= ( 4 + 4√5 + 5 ) / ( 2 – 5 )

= 9 + 4√5
______________________________

Now, putting the values of p and q in the given equation :-

p + q = ( 9 – 4√5 ) + ( 9 + 4√5 )

= 9 – 4√5 + 9 + 4√5

= 18
______________________________
Answered by mechharikumar3p80537
57
Given That
p=(2-√5)/(2+√5)
And q=(2+√5)/(2-√5)
Then We Find The Value Of p+q

p + q =  \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }  +  \frac{2 +  \sqrt{5} }{2 -  \sqrt{5} }
p + q = ( \frac{(2 -  \sqrt{5})(2 -  \sqrt{5}) + (2 +  \sqrt{5} )(2 +  \sqrt{5} )  }{(2 +  \sqrt{5})(2 -  \sqrt{5})  } )
p + q = (  \frac{ {(2 -  \sqrt{5)} }^{2} +  {(2 +  \sqrt{5)} }^{2}  }{ {2}^{2} -  { \sqrt{5} }^{2}  } )
p + q = ( \frac{4 + 5 - 4( \sqrt{5}) + 4 + 5 + 4( \sqrt{5})  }{4 - 5} )
p + q = ( \frac{4 + 5 + 4 + 5}{ - 1})
p + q =  - 18

Similar questions