Physics, asked by ahmedrocks360, 4 months ago

if p is inclined by 100 % what %
of increase will be there in K.E.​

Answers

Answered by Ekaro
9

Correct Question :

The momentum of a body is increased by 100%. The kinetic energy is increased by about

Solution :

❖ Kinetic energy of body of mass m moving at a speed of v is given by

\bf:\implies\:K=\dfrac{1}{2}\:mv^2\:\dots\:(I)

❖ Momentum is measured as the product of mass and velocity.

\bf:\implies\:p=m\:v\:\dots\:(II)

From the (I) and (II) equation,

\dag\:\underline{\boxed{\bf{\purple{K=\dfrac{p^2}{2m}}}}}

Since m remains constant, K ∝ p²

\sf:\implies\:\dfrac{K_1}{K_2}=\left(\dfrac{p_1}{p_2}\right)^2

\sf:\implies\:\dfrac{K_1}{K_2}=\left(\dfrac{p_1}{2p_1}\right)^2

\sf:\implies\:\dfrac{K_1}{K_2}=\dfrac{1}{4}

\bf:\implies\:K_2=4K_1

Percentage increase in KE;

\sf\:=\dfrac{K_2-K_1}{K_1}\times100

\sf\:=\dfrac{4K_1-K_1}{K_1}\times100

\bf=300\%

Answered by Anonymous
4

\large\underline{ \underline{ \sf{ \red{given:} }}}  \\  \\

  • Momentum(p) is increased by 100%

  • Mass is constant.

 \\  \\ \large\underline{ \underline{ \sf{ \red{to \: find:} }}}  \\  \\

  • % increase in Kinetic Energy (K.E)

 \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

We know ,

 \\  \boxed{  \boxed{\sf{K.E =   \frac{1}{2}  m {v}^{2} }}}

  \\  \boxed{ \boxed { \sf{p = mv}}}

Here ,

  • K.E is Kinetic energy.

  • p is momentum.

  • m is mass.

  • v is velocity.

So,

 \\  \boxed{ \sf{ \pink{K.E  =  \frac{ {p}^{2} }{2m} }}}

p is increased by 100%.

Therefore , it is increased by 'p'.

Final momentum = p + p = 2p

Since mass is constant,

ㅤㅤㅤㅤK.E ∝ p²

 \\  \sf{ \frac{ K.E_{(1)} }{ K.E_{(2)} } } =  \frac{  {p}^{2}  \: _ {(1)} }{  {p}^{2}  \: _{(2)} }  \\  \\  \\  \sf{ \frac{ K.E_{(1)} }{K.E _{(2)} } } =  \frac{  {p}^{2} }{ (2 {p)}^{2}  }  \\  \\  \\  \sf{ \frac{ K.E_{(1)}}{ K.E_{(2)} } =  \frac{  \cancel{{p}^{2}} }{4  \cancel{{p}^{2} }  }} \\  \\  \\  \bf{ K.E_{(2)}  = 4K.E _{(1)}} \:

 \\  \\  \sf{\% \: increased =  \frac{ K.E_{(2)} - K.E _{(1)}  }{K.E _{(1)}} } \times 100 \\  \\  \\  \implies \sf{  \frac{4K.E _{(1)} - K.E _{(1)}}{K.E _{(1)}}  \times 100 } \\  \\  \\  \sf{ \implies \frac{3K.E _{(1)}}{ K.E _{(1)}}} \times 100 \\  \\  \\  \sf{ \implies \orange{300\%}}

Hence , K.E is increased by 300% .

Similar questions