Math, asked by yqhsjssses, 1 year ago

if p/q = (32)^-2÷(6/7)^0 , find the value of (p/q)^-3​

Answers

Answered by Anonymous
3

 \frac{p}{q}  =  {32}^{ - 2}   \div   ({ \frac{6}{7} })^{0}  \\  \\  = ( { \frac{1}{32} })^{2}   \div 1 \:  \:  \:  \:  \:  \:---- ( {x}^{0}  = 1) \\  \\  =  \frac{1}{1024}  \times 1 =  \frac{1}{1024}

Then , to find :

( { \frac{p}{q} })^{ - 3}  =  {( \frac{1}{1024} )}^{ - 3}  \\  \\  = ( {32}^{ - 2} )^{ - 3}  =  {32}^{6}


yqhsjssses: if in the place of (32)^-2 we put (3/2)^-2 then
Anonymous: You want me to solve that also ,dear ?
yqhsjssses: yes
yqhsjssses: it's be a great help
Answered by GodBrainly
0
 \blue {\rm \huge \underline{S \large OLUTION \colon}}



\sf \dfrac{p}{q} = 32 {}^{ - 2} \div {\bigg( \dfrac{6}{7} \bigg)}^{0} \\ \sf \: \: \: \: \: = {\bigg(\frac{1}{32} \bigg )}^{2} \div 1 \\ \: \: \: \: \: = \sf \frac{1}{1024} \times 1 \\ \: \: \: \: \: = \sf \frac{1}{1024}

Now, Value of \sf{ \bigg(\dfrac{p}{q} \bigg)}^{-3}

\sf{ \bigg(\dfrac{p}{q} \bigg)}^{-3} = {\bigg(\dfrac{1}{1024} \bigg)}^{ - 3} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf = {({32}^{ - 2} )} {}^{ - 3} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf =32 {}^{6} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf =1073741824
Similar questions