Math, asked by venkatprasad37010, 8 days ago

If p - √q=4-√2/4+√2, then) (p, q) =​

Answers

Answered by Anonymous
3

Answer:

{\large{\underline{\sf{Solution-}}}}

{\longrightarrow{\sf{p -  \sqrt{q}  =  \frac{4 -  \sqrt{2} }{4 +  \sqrt{2} } }}} \\

By Rationalizing,

{\longrightarrow{\sf{ \frac{4 -  \sqrt{2} }{4 +  \sqrt{2} } \times  \frac{4 -  \sqrt{2} }{4 -  \sqrt{2} }  }}} \\

{\longrightarrow{\sf{ \frac{ {(4 -  \sqrt{2}) }^{2} }{ {(4)}^{2} -  {( \sqrt{2} })^{2}  } }}} \\

{\longrightarrow{\sf{ \frac{ {(4)}^{2}  +  {( \sqrt{2}) }^{2} - 2(4)( \sqrt{2}  )}{16 - 2} }}} \\

{\longrightarrow{\sf{ \frac{16 + 2 - 8 \sqrt{2} }{14} }}} \\

{\longrightarrow{\sf{ \frac{18 - 8 \sqrt{2} }{14} }}} \\

{\longrightarrow{\sf{ \frac{2(9 - 4 \sqrt{2}) }{2(7)} }}} \\

{\longrightarrow{\sf{ \frac{9 - 4 \sqrt{2} }{7} }}} \\

{\longrightarrow{\sf{ \frac{9}{7} -  \frac{4 \sqrt{2} }{7}  }}} \\

By Comparing With p - q,

{\longrightarrow{\sf{ \frac{9  }{7} -  \frac{4 \sqrt{2} }{7}  = p -  \sqrt{q}  }}} \\

We Get,

{\longrightarrow{\sf{p =  \frac{9}{7} }}} \\

{\longrightarrow{\sf{ \sqrt{q} =  \frac{4 \sqrt{2} }{7}  }}} \\

Now doing S.O.B.S for q,

{\longrightarrow{\sf{ {( \sqrt{q} )}^{2}  =  { \bigg( \frac{4 \sqrt{2} }{7} \bigg) }^{2} }}} \\

{\longrightarrow{\sf{q =  \frac{32}{49} }}} \\

{ \therefore{ \underline{ \pmb{  \sf{ p =  \frac{9}{7}   \:  \: and \:  \: q =  \frac{32}{49} }}}}} \\

pls mark aa Brainliest :)

Similar questions