Math, asked by deysutapa108, 10 months ago

If p (x) = cx² + dx - c.
then find alpha³ + beta³​

Answers

Answered by brainlyboyak134
3

HOPE THIS WILL HELP YOU

Attachments:
Answered by Anonymous
8

 \large\bf\underline \orange{Given:-}

  • p(x) = cx² + dx - c.

 \large\bf\underline \orange{To \: find:-}

  • value of α³ + β³

 \huge\bf\underline \green{Solution:-}

★ Given equation = cx² + dx - c

  • a = c
  • b = d
  • c = -c

Let α and β are the roots of the given polynomial

  • α + β = - b/a

⠀⠀⠀⠀⠀➝ - d/c

  • α β = c/a

⠀⠀⠀⠀⠀➝ - c/c

⠀⠀⠀⠀⠀➝ -1

we know that,

 \pink{\boxed{  \bf({a}+  {b}) {}^{3}  =  {a}^{3}  + b {}^{3}   + 3ab (a + b)}} \\  \\  \longmapsto \rm \: ({a}+  {b}) {}^{3}  =  {a}^{3}  + b {}^{3}   + 3ab (a + b) \\  \\ \longmapsto \rm \: {a}^{3}  + b {}^{3}  = (a + b) {}^{3}  - 3ab(a + b) \\  \\ \longmapsto \rm \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: =  ( \alpha  +  \beta ) {}^{3}  - 3 \alpha  \beta ( \alpha  +  \beta ) \\  \\ \longmapsto \rm \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: = (\frac{ - d  }{c  } ) {}^{3}  - 3 \times  - 1( \frac{ - d}{c} ) \\  \\ \longmapsto \rm \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: =( \frac{ - d}{c} ) {}^{3}  -  \frac{3d}{c}  \\  \\ \longmapsto \rm \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: = \frac{ - d {}^{3} }{ {c}^{3} }  -  \frac{3d}{c}  \\  \\ \longmapsto \bf\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: = \frac{ - d {}^{3}  - 3c {}^{2}d }{c {}^{3} }

So,

Value of α³ + β³ =\bf \frac{ - d {}^{3}  - 3c {}^{2}d }{c {}^{3} }

Similar questions