Math, asked by avipathak, 1 year ago

If p,x1,x2,x3...... and q,y1,y2,y3.... form two infinite APs with common difference a and b respectively, then the locus of a point Z(M,N) where M=(1/n)[x1 + x2 + x3 +...+ xn] and N=(1/n)[y1 + y2 + y3 +....+ yn] is
is
A) a(x-p)=b(y-q)
B) p(x-a)=b(y-q)
C) p(x-p)=b(y-q)
D) b(x-p)=a(y-q)​

Answers

Answered by sk940178
16

Answer:

b(x-p)=a(y-q).....(Option (D)

Step-by-step explanation:

The first A.P. is p, x_{1},x_{2},x_{3},...... x_{n} and it has common difference a.

So, the A.P. becomes p, p+a, p+2a, p+3a,......, p+na.

The second A.P. is q, y_{1},y_{2},y_{3},...... y_{n} and it has common difference b.

So, the A.P. becomes q, q+b, q+2b, q+3b,......, q+nb.

Now, given that, M= \frac{1}{n}[x_{1}+x_{2}+x_{3}+ .....+x_{n}]

                               =\frac{1}{n}[(p+a)+(p+2a)+(p+3a)+ ...... +(p+na)]

                               =\frac{n}{2n}[(p+a)+(p+na)]  

{Here we have used the formula, the sum of n terms of an A.P. series with first term A and last term L is given by \frac{n}{2}(A+L)}  

                               =\frac{2p+a(n+1)}{2}  

⇒ M-p = \frac{2p+a(n+1)}{2}-p

⇒ M-p = \frac{a(n+1)}{2}

\frac{M-p}{a} =\frac{n+1}{2} ......... (1)

Again, given that, N= \frac{1}{n}[y_{1}+y_{2}+y_{3}+ .....+y_{n}]

                               =\frac{1}{n}[(q+b)+(q+2b)+(q+3b)+ ...... +(q+nb)]

                               =\frac{n}{2n}[(q+b)+(q+nb)]

                               =\frac{2q+b(n+1)}{2}

⇒ N-q = \frac{2q+b(n+1)}{2}-p

⇒ N-q = \frac{b(n+1)}{2}

\frac{N-q}{b} =\frac{n+1}{2} ......... (2)  

So, from equation (1) and (2), we can write,  

\frac{M-p}{a}=\frac{N-q}{b}

Hence, if Z(M,N) is a point, then the locus of the point will be given by

\frac{x-p}{a}=\frac{y-q}{b} {Converting into current coordinates}

⇒b(x-p)=a(y-q).....(Option (D).(Answer)

Similar questions