If p1 and p be the radius of curvature at the end of a focal chord of the parabola y2 = 4ax, then show that p1(-2/3)+p2(-2/3) = (2a)(-2/3)
Answers
Step-by-step explanation:
To solve this problem, let us take the parametric equation of the parabola y² = 4ax,
x = at², y = 2at
Then dx/dt = 2at, d²x/dt² = 2a
and dy/dt = 2a, d²y/dt² = 0
Therefore radius of curvature,
p = {(dx/dt)² + (dy/dt)²}^(3/2) / (dx/dt d²y/dt² - dy/dt d²x/dt²)
= {4a²t² + 4a²}^(3/2) / (0 - 4a²)
= - {4a² (t² + 1)}^(3/2) / 4a²
= {4a² (t² + 1)}^(3/2) / 4a² [ in magnitude ]
= 8a³ (1 + t²)^(3/2) / 4a²
= 2a (1 + t²)^(3/2)
Let 't₁' and 't₂' be the ends of a focal chord of the parabola.
Then t₁ t₂ = - 1
Thus p₁ = 2a (1 + t₁²)^(3/2)
and p₂ = 2a (1 + t₂²)^(3/2)
∴ p₁^(-2/3) + p₂^(- 2/3)
= (2a)^(- 2/3) {1/(1 + t₁²) + 1/(1 + t₂²)}
= (2a)^(- 2/3)
i.e., p₁^(-2/3) + p₂^(- 2/3) = (2a)^(- 2/3)
Hence proved.
Calculation:
1/(1 + t₁²) + 1/(1 + t₂²)
= 1/(1 + t₁²) + 1/{1 + (- 1/t₁)²} [ ∵ t₁ t₂ = - 1 ]
= 1/(1 + t₁²) + t₁²/(1 + t₁²)
= (1 + t₁²)/(1 + t₁²)
= 1
Radius of curvature ( ρ ) formulae:
1. For Cartesian equation y = f(x)
ρ = (1 + y₁²)^(3/2) / y₂
where y₂ ≠ 0
2. For parametric equation x = φ(t), y = ψ(t)
ρ = (x'² + y'²)^(3/2) / (x' y" - y' x")
where x' y" - y' x" ≠ 0
3. For polar equation r = f(θ)
ρ = (r² + r₁²)^(3/2) / (r² + 2 r₁² - r r₂)
where r² + 2 r₁² - r r₂ ≠ 0
4. For pedal equation p = f(r)
ρ = r dr/dp
5. For tangential polar equation p = f(ψ)
ρ = p + d²p/dψ²