Math, asked by sanjaissmite, 1 month ago

If pth, qth, rth terms of a G.P. are a, b, c respectively, then prove that value of a^q-r b^r-p c^p-q = 1



plz help me​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Let assume that first term of GP series is A and common ratio is R.

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an geometric sequence GP is

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\: {r}^{n - 1} }}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • r is the common ratio.

According to statement,

It is given that,

\rm :\longmapsto\:a_p = a

\bf\implies \: {AR}^{p - 1} = a -  -  - (1)

Also,

\rm :\longmapsto\:a_q = b

\bf\implies \: {AR}^{q - 1} = b -  -  - (2)

Also,

\rm :\longmapsto\:a_r = c

\bf\implies \: {AR}^{r - 1} = c -  -  - (3)

Now, Consider

\rm :\longmapsto\: {a}^{q - r} \:  {b}^{r - p} \:  {c}^{p - q}

\rm \:  =  \:  \: {\bigg( {AR}^{p - 1} \bigg) }^{q - r} {\bigg( {AR}^{q - 1} \bigg) }^{r - p} {\bigg( {AR}^{r - 1} \bigg) }^{p - q}

\rm \:  =  \: {A}^{q - r} {A}^{r - p} {A}^{r - p}  {\bigg( {R}^{p - 1} \bigg) }^{q - r} {\bigg( {R}^{q - 1} \bigg) }^{r - p} {\bigg( {R}^{r - 1} \bigg) }^{p - q}

\rm \:  =  \:  {\bigg(A\bigg) }^{q - r + r - p + p - q}  {\bigg(R\bigg) }^{(p - 1)(q - r) + (q - 1)(r - p) + (r - 1)(p - q)}

\rm \:  =  \:  {\bigg(A\bigg) }^{0}  {\bigg(R\bigg) }^{pq - pr - q + r  + qr - qp - q + p + rp - rq - p + q}

\rm \:  =  \:  \:1 \times  {R}^{0}

\rm \:  =  \:  \:1

Hence, Proved

Additional Information :-

↝ Sum of n  terms of an Geometric sequence GP is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{a \: ( {r}^{n}  \:  -  \: 1)}{r \:  -  \: 1 \:} \: provided \: that \: r \:  \ne \: 1}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of GP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • r is the common ratio.

Similar questions