IF pth term of an A.P. is 1/q and qth term is 1/p then prove that the sum of the first pq term is 1/2[pa+1]
Answers
Answered by
5
Given pth term = 1/q That is ap = a + (p - 1)d = 1/q aq + (pq - q)d = 1 --- (1) Similarly, we get ap + (pq - p)d = 1 --- (2) From (1) and (2), we get aq + (pq - q)d = ap + (pq - p)d aq - ap = d[pq - p - pq + q] a(q - p) = d(q - p) Therefore, a = d Equation (1) becomes, dq + pqd - dq = 1 d = 1/pq Hence a = 1/pq Consider, Spq = (pq/2)[2a + (pq - 1)d] = (pq/2)[2(1/pq) + (pq - 1)(1/pq)] = (1/2)[2 + pq - 1] = (1/2)[pq + 1]
Answered by
10
Question shd be "If pth term of an A.P is 1/q and its qth term is 1/p then show that its sum of (pq)th terms is ---- 1/2 (pq + 1)."
Given pth term = 1/q
That is ap = a + (p - 1)d = 1/q
aq + (pq - q)d = 1 --- (1)
Similarly, we get ap + (pq - p)d = 1 --- (2)
From (1) and (2), we get
aq + (pq - q)d = ap + (pq - p)d
aq - ap = d[pq - p - pq + q]
a(q - p) = d(q - p)
Therefore, a = d
Equation (1) becomes,
dq + pqd - dq = 1
d = 1/pq
Hence a = 1/pq
Consider, Spq = (pq/2)[2a + (pq - 1)d]
= (pq/2)[2(1/pq) + (pq - 1)(1/pq)]
= (1/2)[2 + pq - 1]
= (1/2)[pq + 1]
Given pth term = 1/q
That is ap = a + (p - 1)d = 1/q
aq + (pq - q)d = 1 --- (1)
Similarly, we get ap + (pq - p)d = 1 --- (2)
From (1) and (2), we get
aq + (pq - q)d = ap + (pq - p)d
aq - ap = d[pq - p - pq + q]
a(q - p) = d(q - p)
Therefore, a = d
Equation (1) becomes,
dq + pqd - dq = 1
d = 1/pq
Hence a = 1/pq
Consider, Spq = (pq/2)[2a + (pq - 1)d]
= (pq/2)[2(1/pq) + (pq - 1)(1/pq)]
= (1/2)[2 + pq - 1]
= (1/2)[pq + 1]
Maithili25:
Thanks
Similar questions