Math, asked by ankushchakraborty809, 5 months ago

if Q(0,1)is equidistant form P(5,-3) and R(X,6),fined the value of X

Answers

Answered by MagicalBeast
10

Given :

  • Q(0,1) is equidistant from P(5,-3) & R(X,6)

To find : X

Formula used :

Distance = √ { (x₂ - x₁)² + (y₂ - y₁² }

Solution :

Let distance between P(5,-3) & Q(0,1) = A

then,

\sf \implies \:  A \:  =  \sqrt{ {(5 - 0)}^{2}  +  {( - 3 - 1)}^{2} }  \\  \\ \sf \implies \:  A \:  =  \:  \sqrt{ {5}^{2}  +  {( - 4)}^{2} }  \\  \\ \sf \implies  \: A \:  =  \:  \sqrt{25 + 16}  \\  \\ \sf \implies \:  A \:  =  \sqrt{41}

_______________________________________________

Let , distance between R(X,6) & Q(0,1) = B

\sf \implies  \: B  \: =  \sqrt{ {( X  - 0) }^{2} +  {(6 - 1)}^{2}  }  \\  \\ \sf \implies  \: B  \: =  \sqrt{ {( X ) }^{2} +  {(5)}^{2}  }  \\  \\ \sf \implies  \: B  \: =  \sqrt{ {X  }^{2} +  25  }

_______________________________________________

As , Q(0,1) is equidistant from P(5,-3) & R(X,6)

➝ A = B

➝ √41 = √(X² + 25)

On Squaring both side, we get;

➝ 41 = X² + 25

➝ X² = 41 - 25

➝ X² = 16

➝ X = √16

X = ±4

_______________________________________________

ANSWER :

X = ±4

Similar questions