if roots of equation (a square +b square) x square +2(bc-ad) x+c square +d square =0 are equal then show that ac+bd=0
Answers
Answered by
1
Answer:
⟹[2(bc−ad)
]
2
−4(
a
2
+
b
2
)(
c
2
+
d
2
)=0
⟹[2(bc−ad)]2−4(a2+b2)(c2+d2)=0
⟹4(
b
2
c
2
+
a
2
d
2
−2abcd)−4
a
2
c
2
−4
a
2
d
2
−4
b
2
c
2
−4
b
2
d
2
=0
⟹4(b2c2+a2d2−2abcd)−4a2c2−4a2d2−4b2c2−4b2d2=0
⟹−8abcd−4
a
2
c
2
−4
b
2
d
2
=0
⟹−8abcd−4a2c2−4b2d2=0
⟹2abcd+
a
2
c
2
+
b
2
d
2
=0
⟹2abcd+a2c2+b2d2=0
⟹(ac+bd
)
2
=0
⟹(ac+bd)2=0
Explanation:
Similar questions