Math, asked by guruji144011, 1 month ago

If roots of equation x²+7x+5 = 0 are α & β. Find 1/α ²+ 1/β²​

Answers

Answered by abhi569
2

Answer:

39/25

Step-by-step explanation:

For an equation in form of ax² + bx + c = 0,  -b/a and c/a is the sum and product of roots respectively.   Therefore,  if α and β are roots:

⇒ -(7/1) = α + β     and  5/1 = αβ

⇒ - 7 = α + β     and 5 = αβ

  Square on both sides of α+β

⇒ 49 = α² + β² + 2αβ

⇒ 49 - 2(5) = α² + β²      [αβ = 5]

⇒ 39 = α² + β²

∴ 1/α² + 1/β²  = (β² + α²)/(αβ)²

                   = 39/(5)²

                   = 39/25

Answered by Anonymous
2

Given Equation

 \tt \to \:  {x}^{2}  + 7x + 5 = 0

To Find

 \tt\to \dfrac{1}{ \alpha ^{2}  }  +  \dfrac{1}{ { \beta }^{2} }

Now Compare with

 \tt \to {ax}^{2}  + bx + c = 0

We Get

 \tt \to \: a = 1,b = 7 \: and \: c = 5

Sum of the root are

 \tt \to \: ( \alpha  +  \beta  ) =  \dfrac{ - b}{a}

Product of the root are

 \tt \to \: ( \alpha  \beta ) =  \dfrac{c}{a}

We get

\tt \to \: ( \alpha  +  \beta  ) =  \dfrac{ - 7}{1}  =  - 7

 \tt \to \: ( \alpha  \beta ) =  \dfrac{5}{1}  = 5

Now we Have to find

\tt\to \dfrac{1}{ \alpha ^{2}  }  +  \dfrac{1}{ { \beta }^{2} }

Taking Lcm

 \tt \to \:  \dfrac{ { \alpha }^{2}  +  { \beta }^{2} }{( \alpha  \beta ) {}^{2} }

 \tt \to \:  \dfrac{( \alpha  +  \beta ) {}^{2} - 2 \alpha  \beta  }{( \alpha  \beta ) {}^{2} }

 \tt \to \:  \dfrac{( - 7) {}^{2} - 2 \times 5 }{(5) ^{2} }

 \tt \to \:  \dfrac{49  - 10}{25}  =  \dfrac{39}{25}

Answer

 \tt \to \:  \dfrac{39}{25}

Similar questions