Math, asked by sudhirk4990, 7 days ago

if roots of (p^2+q^2)x^2 -2(pr+Q's)x+(r^2+s^2)=0 are equal prove p/q=r/s​

Answers

Answered by mathdude500
2

\large\underline{\sf{Given- }}

 \sf \: A  \: quadratic  \: equation  \: ( {p}^{2} +  {q}^{2}) {x}^{2}  - 2(pr + qs)x + ( {r}^{2} +  {s}^{2}) = 0

 \sf \: has \: real \: and \: equal \: roots.

\large\underline{\sf{To\:prove - }}

 \sf \: \dfrac{p}{q}  = \dfrac{r}{s}

\large\underline{\sf{Basic \:  Concept \:  Used - }}

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac

\large\underline{\sf{Solution-}}

The given Quadratic equation is

\rm :\longmapsto\:( {p}^{2} +  {q}^{2}) {x}^{2}  - 2(pr + qs)x + ( {r}^{2} +  {s}^{2}) = 0

On comparing with ax² + bx + c = 0, we get

 \:  \:  \:  \:  \:  \bull \sf \: a =  {p}^{2}  +  {q}^{2}

 \:  \:  \:  \:  \:  \bull \sf \: b =   - 2(pr + qs)

 \:  \:  \:  \:  \:  \bull \sf \: c =  {r}^{2}  +  {s}^{2}

Since,

  • Given equation has real and equal roots,

So,

\bf\implies \:Discriminant \: (D) = 0

\rm :\implies\: {b}^{2}  \:  -  \: 4ac = 0

\rm :\longmapsto\: {\bigg( - 2(pr + qs)  \bigg) }^{2}  - 4({p}^{2}  +  {q}^{2} )({r}^{2}  +  {s}^{2} ) = 0

\rm :\longmapsto\: 4{\bigg((pr + qs)  \bigg) }^{2}  - 4({p}^{2}  +  {q}^{2} )({r}^{2}  +  {s}^{2} ) = 0

On dividing by 4, we get

\rm :\longmapsto\: {\bigg(pr + qs  \bigg) }^{2}  - ({p}^{2}  +  {q}^{2} )({r}^{2}  +  {s}^{2} ) = 0

 \sf \:  {p}^{2}  {r}^{2}  +  {q}^{2}  {s}^{2}  + 2pqrs - ( {p}^{2}  {r}^{2}  +  {p}^{2}  {s}^{2}  +  {q}^{2}  {r}^{2}  +  {q}^{2}  {s}^{2} ) = 0

 \sf \:  \cancel{{p}^{2}{r}^{2}}+\cancel{{q}^{2}{s}^{2}}+2pqrs - \cancel{{p}^{2} {r}^{2}}   -   {p}^{2}  {s}^{2}   -   {q}^{2}  {r}^{2}   -   \cancel{{q}^{2}{s}^{2}} = 0

\rm :\longmapsto\:2pqrs -  {p}^{2}  {s}^{2}  -  {q}^{2}  {r}^{2}  = 0

\rm :\longmapsto\:{p}^{2}  {s}^{2}+{q}^{2}{r}^{2} - 2pqrs  = 0

\rm :\longmapsto\: {(ps)}^{2}  +  {(qr)}^{2}  - 2 \times (ps) \times (qr) = 0

\rm :\implies\: {\bigg(ps \:  -  \: qr \bigg) }^{2}  = 0

\rm :\implies\:ps \:  -  \: qr \:  =  \: 0

\rm :\longmapsto\:ps \:  =  \: qr

\bf\implies \:\dfrac{p}{q}  \:  =  \: \dfrac{r}{s}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions