Math, asked by vanshika1135, 11 months ago

If sec 0=25/7,find the value of tan0.

Answers

Answered by mansurijishan805
0

Step-by-step explanation:

1+ tan^2 theta =sec^2 theta

tan^2 theta =[(25\7)^2 ]-1

= [625\49]-1

=[(625-49)\49

tan^2 theta = 576\49

tan theta =24 \7

plzz maek as a brainliest answer

Answered by Brâiñlynêha
4

\huge\mathbb{SOLUTION:-}

\sf\underline{\blue{\:\:\:\:\:\:\:\: Given:-\:\:\:\:\:\:\:\:}}

\sf\:\: \bullet sec\theta=\dfrac{25}{7}

  • we have to find the value of

  • \sf tan\theta

Now by formula

\boxed{\sf{\purple{1+tan{}^{2}\theta=sec{}^{2}\theta}}}

\bf\underline{\red{\:\:\:\:\:\:\:\: A.T.Q:-\:\:\:\:\:\:\:\:}}

\sf\implies 1+tan{}^{2}\theta=\bigg(\dfrac{25}{7}\bigg){}^{2}\\ \\ \sf:\implies 1+tan{}^{2}\theta=\dfrac{625}{49}\\ \\ \sf:\implies tan{}^{2}\theta=\dfrac{625}{49}-1\\ \\ \sf:\implies tan{}^{2}\theta=\dfrac{625-49}{49}\\ \\ \sf:\implies tan{}^{2}\theta=\dfrac{576}{49}\\ \\ \sf:\implies tan\theta=\sqrt{\dfrac{576}{49}}\\ \\ \sf:\implies tan\theta= \dfrac{24}{7}

\boxed{\sf{tan\theta=\dfrac{24}{7}}}

Similar questions