if sec^2A=2+2tanA, find tanA.
Answers
Answered by
14
Hey there !!!!!!!
_________________________________________
sec²A=2+2tanA
But sec²A-tan²A=1
So sec²A=1+tan²A
1+tan²A=2+2tanA
tan²A-2tanA+1-2=0
tan²A-2tanA-1=0---Equation 1
Equation 1 is of the form ax²+bx+c=0
where x=-b+√(b²-4ac)/2a or -b-√(b²-4ac)/2a
Comparing tan²A-2tanA-1=0 with ax²+bx+c=0
a=1 b=-2 c=-1 and x=tanA
So,
tanA=-b+√b²-4ac/2a or -b-√b²-4ac/2a
tanA= (2+√(2²-(-1*4)))/2 or (2-√(2²-(-1*4)))/2
tanA=(2+√4+4 )/2 or (2-√4+4 )/2
tanA=(2+√8)/2 or (2-√8)/2
tanA=2+2√2/2 or 2-2√2/2
tanA=1+√2 or 1-√2
___________________________________________________
Hope this helped you...............
_________________________________________
sec²A=2+2tanA
But sec²A-tan²A=1
So sec²A=1+tan²A
1+tan²A=2+2tanA
tan²A-2tanA+1-2=0
tan²A-2tanA-1=0---Equation 1
Equation 1 is of the form ax²+bx+c=0
where x=-b+√(b²-4ac)/2a or -b-√(b²-4ac)/2a
Comparing tan²A-2tanA-1=0 with ax²+bx+c=0
a=1 b=-2 c=-1 and x=tanA
So,
tanA=-b+√b²-4ac/2a or -b-√b²-4ac/2a
tanA= (2+√(2²-(-1*4)))/2 or (2-√(2²-(-1*4)))/2
tanA=(2+√4+4 )/2 or (2-√4+4 )/2
tanA=(2+√8)/2 or (2-√8)/2
tanA=2+2√2/2 or 2-2√2/2
tanA=1+√2 or 1-√2
___________________________________________________
Hope this helped you...............
Sinu7:
buddy for disturbing u but i didnt understand after 6th step
Similar questions