Math, asked by Nanducs1081, 2 months ago

if sec^4 theta + sec^2 theta = 10+ tan^4 theta+tan^2 theta then sin^2 theta =

Answers

Answered by MrImpeccable
27

ANSWER:

Given:

  • sec⁴θ + sec²θ = 10 + tan⁴θ + tan²θ

To Find:

  • sin²θ

Solution:

We are given that,

\implies\sec^4\theta+\sec^2\theta=10+\tan^4\theta+\tan^2\theta

Taking sec²θ common in LHS,

\implies\sec^2\theta(\sec^2\theta+1)=10+\tan^4\theta+\tan^2\theta

Taking tan²θ common in RHS,

\implies\sec^2\theta(\sec^2\theta+1)=10+\tan^2\theta(\tan^2\theta+1)

We know that,

\hookrightarrow\sec^2\phi=1+\tan^2\phi

So,

\implies\sec^2\theta(\sec^2\theta+1)=10+\tan^2\theta(\tan^2\theta+1)

\implies\sec^2\theta(\sec^2\theta+1)=10+\tan^2\theta(\sec^2\theta)

\implies\sec^2\theta(\sec^2\theta+1)=10+\tan^2\theta\sec^2\theta

Transposing tan²θ sec²θ to LHS,

\implies\sec^2\theta(\sec^2\theta+1)-\tan^2\theta\sec^2\theta=10

Taking sec²θ common,

\implies\sec^2\theta(\sec^2\theta+1-\tan^2\theta)=10

\implies\sec^2\theta(\sec^2\theta-\tan^2\theta+1)=10

We know that,

\hookrightarrow\sec^2\phi-\tan^2\phi=1

So,

\implies\sec^2\theta(1+1)=10

\implies2\sec^2\theta=10

So,

\implies\sec^2\theta=5

We know that,

\hookrightarrow\sec\phi=\dfrac{1}{\cos\phi}

So,

\implies\sec^2\theta=5

\implies\dfrac{1}{\cos^2\theta}=5

So,

\implies\cos^2\theta=\dfrac{1}{5}

We know that,

\hookrightarrow\sin^2\phi=1-\cos^2\phi

So,

\implies\cos^2\theta=\dfrac{1}{5}

\implies1-\sin^2\theta=\dfrac{1}{5}

\implies\sin^2\theta=1-\dfrac{1}{5}

\implies\sin^2\theta=\dfrac{5-1}{5}

Hence,

\implies\bf sin^2\theta=\dfrac{4}{5}

Therefore, the value of sin²θ is ⅘.

Answered by vishnuvardhandasari8
0

Answer:

4/5

Step-by-step explanation:

&&6__7+&-++

guiugihfiigujgjkdriufh

yrugdeeqti57 oj tr hv hm

jdtoljhfyioo9754eewfhbnn

bgjiysfkoopppppopppppp{oooo

Similar questions