If sec A + tan A=7, then evaluate sec A - tan A
Answers
Answered by
6
We have,
sec A + tan A = 7 ----------eqn (1)
sec A = 7 - tan A
(squaring both sides )
sec^2 A = 49 + tan^2 A - 14 tan A
sec^2 A - tan^2 A + 14 tan A - 49 = 0
( using identity sec^2 A - tan^2A = 1 )
1 + 14 tan A - 49 = 0
14 tan A = 48
tan A = 48 / 14
tan A = 24 / 7
putting in eqn (1) we will get
secA + (24 /7) = 7
we will get,
secA = 25 /7
so,
sec A - tan A = (25/7) -(24/7)
sec A - tan A = 1 / 7.
Hence
sec A - tan A = 1 / 7.
✤Another way to solve the same is✤
we have,
sec A + tan A = 7
( multiplying by sec A - tan A both sides we will get)
(sec A +tan A) (secA-tanA) = 7 ( secA-tanA)
that is
sec^2A - tan^2A = 7 ( secA-tan A)
1 = 7 ( secA - tan A)
so,
sec A - tan A = 1/7.
Similar questions