Math, asked by maimanojjhalak0, 1 year ago

If :
sec A + tan A = x
Show that :
sin A = (x^2 - 1) / (x^2 + 1)

Answers

Answered by razakMuhammad
0
1 is the answer because sec and tan are recipoxals of each other

rakeshmohata: cot and tan are reciprocal.. and cos and sec
razakMuhammad: sec we can write as tan cos will cot
razakMuhammad: ×-2/×+2
Answered by rakeshmohata
2
Hope u like my process
=====================
We know,

sec²A - tan² A = 1

secA + tanA = x ____(1)

So,

sec²A - tan²A = 1

or, (secA + tanA) (secA - tanA) = 1

or, (secA - tanA)* x = 1

or, secA - tanA = 1/x____(2)

Adding eq (1) and (2) we get,
__________________
=> secA + tanA = x
+ secA - tanA = 1/x
-------------------------------
=> 2 secA = (x +1/x) = (x² +1)/x
___________________
Subtracting eq (1) and (2) we get,
-------------------------------------------------
_secA + tanA = x
- (secA - tanA) = - 1/x
_________________
=> 2tanA = x - 1/x = (x² - 1)/x
————————————
Now,

 \sin(a)  =  \frac{ \tan( a) }{ \sec(a) }  =  \frac{2 \tan(a) }{2 \sec(a) }  \\  =  \frac{ \frac{ { x}^{2}  - 1}{x} }{  \frac{ {x}^{2} + 1 }{x}  }  =  \frac{ {x}^{2}  - 1}{ {x}^{2}  + 1}



Hence..... proved.

_-_-_-_-_-_-_-_-_-_-_
Hope this is ur required answer

Proud to help you


rakeshmohata: thnx for the brainliest one
Similar questions