If :
sec A + tan A = x
Show that :
sin A = (x^2 - 1) / (x^2 + 1)
Answers
Answered by
0
1 is the answer because sec and tan are recipoxals of each other
rakeshmohata:
cot and tan are reciprocal.. and cos and sec
Answered by
2
Hope u like my process
=====================
We know,
sec²A - tan² A = 1
secA + tanA = x ____(1)
So,
sec²A - tan²A = 1
or, (secA + tanA) (secA - tanA) = 1
or, (secA - tanA)* x = 1
or, secA - tanA = 1/x____(2)
Adding eq (1) and (2) we get,
__________________
=> secA + tanA = x
+ secA - tanA = 1/x
-------------------------------
=> 2 secA = (x +1/x) = (x² +1)/x
___________________
Subtracting eq (1) and (2) we get,
-------------------------------------------------
_secA + tanA = x
- (secA - tanA) = - 1/x
_________________
=> 2tanA = x - 1/x = (x² - 1)/x
————————————
Now,
Hence..... proved.
_-_-_-_-_-_-_-_-_-_-_
Hope this is ur required answer
Proud to help you
=====================
We know,
sec²A - tan² A = 1
secA + tanA = x ____(1)
So,
sec²A - tan²A = 1
or, (secA + tanA) (secA - tanA) = 1
or, (secA - tanA)* x = 1
or, secA - tanA = 1/x____(2)
Adding eq (1) and (2) we get,
__________________
=> secA + tanA = x
+ secA - tanA = 1/x
-------------------------------
=> 2 secA = (x +1/x) = (x² +1)/x
___________________
Subtracting eq (1) and (2) we get,
-------------------------------------------------
_secA + tanA = x
- (secA - tanA) = - 1/x
_________________
=> 2tanA = x - 1/x = (x² - 1)/x
————————————
Now,
Hence..... proved.
_-_-_-_-_-_-_-_-_-_-_
Hope this is ur required answer
Proud to help you
Similar questions