If sec θ + tan θ = m and sec θ – tan θ = n, find the value of .rootmn
Answers
Answered by
4
♦Heya ♦
Sec² x - Tan² x =
( Sec x + Tan x ) × ( Sec x - Tan x )
Sec² x - Tan² x = m × n
Sec² x - Tan² x = mn
1 + Tan² x - Tan² x = mn
1 = mn
Taking Square root on both sides we have:)
√(mn) = √(1)
√(mn) = 1
NOTE:-
1) 1 + Tan² x = Sec² x
2) (a + b) × (a - b) = (a² - b² )
3) x = Theta:))
Similar questions