if secα+tanα=p, find the value of sinα interms of "p"??
Answers
Answered by
12
secα + tanα = p ......(1) [ given]
We know that, sec²α-tan²α = 1
⇒ (secα + tanα)(secα-tanα) = 1
⇒ (secα-tanα) = 1/p ........... (2)
Adding (1) and (2)
⇒2 secα = p + 1/p
Subtracting (2) from (1)
⇒2tanα = p - 1/p
Now,
We know that, sec²α-tan²α = 1
⇒ (secα + tanα)(secα-tanα) = 1
⇒ (secα-tanα) = 1/p ........... (2)
Adding (1) and (2)
⇒2 secα = p + 1/p
Subtracting (2) from (1)
⇒2tanα = p - 1/p
Now,
Answered by
4
secα + tanα = p
We know sec²α-tan²α = 1
⇒ (secα + tanα)(secα-tanα) = 1
⇒ (secα-tanα) = 1/p
Adding we get p + 1/p = 2secα
Subtracting we get p - 1/p = 2tanα
⇒ 2 sinα.secα=p-1/p
⇒ sinα(p+1/p)=p-1/p
⇒ sin α=(p²-1)/(p²+1)
We know sec²α-tan²α = 1
⇒ (secα + tanα)(secα-tanα) = 1
⇒ (secα-tanα) = 1/p
Adding we get p + 1/p = 2secα
Subtracting we get p - 1/p = 2tanα
⇒ 2 sinα.secα=p-1/p
⇒ sinα(p+1/p)=p-1/p
⇒ sin α=(p²-1)/(p²+1)
Similar questions