If sec θ +tan θ =p, show that : Sinθ = (p² -1)/(p²+1)
Answers
Answered by
1
Solution:
LHS = p²-1/ p²+1
= (secθ +tanθ)²-1 / (secθ +tanθ)²+1
= sec²θ +tan²θ +2secθtanθ-1/sec²θ +tan²θ +2secθtanθ+1
[( a+b)²= a²+b²+2ab]
= (sec²θ -1)+tan²θ +2secθ tanθ /sec²θ +2secθtanθ +(1+tan²θ)
= tan²θ+tan²θ +2secθ tanθ / sec²θ+2secθtanθ +sec²θ
[tan²θ= sec²θ-1] [sec²θ=1+tan²θ]
= 2tan²θ +2secθ tanθ /2 sec²θ+2secθtanθ +sec²θ
= 2tanθ(tanθ+ secθ) / 2secθ(secθ+tanθ)
= tanθ/ cosθ = sinθ
LHS= RHS
========================================================°=========================
Hope this will help you....
LHS = p²-1/ p²+1
= (secθ +tanθ)²-1 / (secθ +tanθ)²+1
= sec²θ +tan²θ +2secθtanθ-1/sec²θ +tan²θ +2secθtanθ+1
[( a+b)²= a²+b²+2ab]
= (sec²θ -1)+tan²θ +2secθ tanθ /sec²θ +2secθtanθ +(1+tan²θ)
= tan²θ+tan²θ +2secθ tanθ / sec²θ+2secθtanθ +sec²θ
[tan²θ= sec²θ-1] [sec²θ=1+tan²θ]
= 2tan²θ +2secθ tanθ /2 sec²θ+2secθtanθ +sec²θ
= 2tanθ(tanθ+ secθ) / 2secθ(secθ+tanθ)
= tanθ/ cosθ = sinθ
LHS= RHS
========================================================°=========================
Hope this will help you....
Similar questions