Math, asked by Jazza26, 1 year ago

If sec theta + tan theta = p , then show that p^2 - 1/ p^2 + 1 = sin theta

Answers

Answered by Anonymous
8

secA+tanA=p ----------------------------(1)

We know that,

sec²A-tan²A=1

or, (secA+tanA)(secA-tanA)=1

or, p(secA-tanA)=1

or, secA-tanA=1/p -----------------------(2)

Adding (1) and (2) we get,

2secA=p+1/p

or, secA=(p²+1)/2p

∴, cosA=1/secA=2p/(p²+1)

∴, sinA=√(1-cos²A)

=√{1-4p²/(p²+1)²

=√{(p²+1)²-4p²}/(p²+1)²

=√(p⁴+2p²+1-4p²)/(p²+1)

=√(p²-1)²/(p²+1)

=(p²-1)/(p²+1) (Proved)




Jazza26: thank you for your well explained method
Answered by lithin25
2

Answer: sec theta =p square +1/2 p

Step-by-step explanation:

Similar questions