If sec theta + tan theta = p , then show that p^2 - 1/ p^2 + 1 = sin theta
Answers
Answered by
8
secA+tanA=p ----------------------------(1)
We know that,
sec²A-tan²A=1
or, (secA+tanA)(secA-tanA)=1
or, p(secA-tanA)=1
or, secA-tanA=1/p -----------------------(2)
Adding (1) and (2) we get,
2secA=p+1/p
or, secA=(p²+1)/2p
∴, cosA=1/secA=2p/(p²+1)
∴, sinA=√(1-cos²A)
=√{1-4p²/(p²+1)²
=√{(p²+1)²-4p²}/(p²+1)²
=√(p⁴+2p²+1-4p²)/(p²+1)
=√(p²-1)²/(p²+1)
=(p²-1)/(p²+1) (Proved)
Jazza26:
thank you for your well explained method
Answered by
2
Answer: sec theta =p square +1/2 p
Step-by-step explanation:
Similar questions