Math, asked by sonisrishti2002, 1 year ago

If sec theta = x+1/4x ,prove that :
sec theta +tan theta=2x or 1/2x.

Answers

Answered by sushant9093
260

Answer:

Hope this will help you

Attachments:
Answered by mysticd
609

Answer:

If sec theta = x+1/4x then sec theta +tan theta=2x or 1/2x.

Step-by-step explanation:

Given \: sec\theta = x + \frac{1}{4x}--(1)

/* We know the, trigonometric identity :

tan²A = Sec²A-1*/

tan^{2}\theta \\= \left(x+\frac{1}{4x}\right)^{2}-1\\=x^{2}+2\times x \times \big(\frac{1}{4x}\big)+\left(\frac{1}{4x}\right)^{2}-1

=x^{2}+\frac{1}{2}+\frac{1}{16x^{2}}-1

=x^{2}-\frac{1}{2}+\frac{1}{16x^{2}}

=x^{2}-2\times x \times \frac{1}{4x}+\big(\frac{1}{4x}\big)^{2}

=\left(x-\frac{1}{4x}\right)^{2}

tan\theta = ± \left(x-\frac{1}{4x}\right)--(2)

Now,\\sec\theta + tan\theta\\=x+\frac{1}{4x}±\left(x-\frac{1}{4x}\right)

Case \:1\\sec\theta + tan\theta\\=x+\frac{1}{4x}+\left(x-\frac{1}{4x}\right)

=2x

Case\:2\\sec\theta + tan\theta\\=x+\frac{1}{4x}-\left(x-\frac{1}{4x}\right)

=x+\frac{1}{4x}-x+\frac{1}{4x}

=\frac{1}{2x}

•••♪

Similar questions