if secA+tanA=3 then find cot A
Answers
Answered by
1
Hey !!!
SecA + tanA = 3
1/cosA+sinA/cosA = 3
1 + sinA/cosA = 3
1 + sinA = 3cosA
(1 + sinA)² = (3cosA )² ⬅ Squaring in both side
1² + sin²A + 2sinA = 9cos²A
1² + sin²A + 2sinA = 9(1 - sin²A )
1 + sin²A + 2sinA + 9sin²A - 9 = 0
10sin²A + 2sinA - 8 = 0
2(5sin²A + sinA - 4 ) =0
5sin²A + sinA - 4 = 0 ➡Now it is in the form of quadratic equation like 5x² + x - 4 = 0
so, by using splitting method of quadratic equation .
5sinA² + 5sinA - 4sinA - 4 = 0 {splitting method }
5sinA(sinA + 1 ) - 4 ( sinA + 1) = 0
(5sinA - 4) ( sinA + 1) = 0
5sinA - 4 = 0
sinA = 4/5 and sinA + 1 = 0 sinA = -1 (neglect it )
now. sinA = 4/5 = p/h
b = √5² - 4² (PYTHAGORAS thoeorm)
b = √25-16
b = √9 = 3
cotA = b/p = 3/4Answer
***********************************
Hope it helps you !!
Rajukumar111
SecA + tanA = 3
1/cosA+sinA/cosA = 3
1 + sinA/cosA = 3
1 + sinA = 3cosA
(1 + sinA)² = (3cosA )² ⬅ Squaring in both side
1² + sin²A + 2sinA = 9cos²A
1² + sin²A + 2sinA = 9(1 - sin²A )
1 + sin²A + 2sinA + 9sin²A - 9 = 0
10sin²A + 2sinA - 8 = 0
2(5sin²A + sinA - 4 ) =0
5sin²A + sinA - 4 = 0 ➡Now it is in the form of quadratic equation like 5x² + x - 4 = 0
so, by using splitting method of quadratic equation .
5sinA² + 5sinA - 4sinA - 4 = 0 {splitting method }
5sinA(sinA + 1 ) - 4 ( sinA + 1) = 0
(5sinA - 4) ( sinA + 1) = 0
5sinA - 4 = 0
sinA = 4/5 and sinA + 1 = 0 sinA = -1 (neglect it )
now. sinA = 4/5 = p/h
b = √5² - 4² (PYTHAGORAS thoeorm)
b = √25-16
b = √9 = 3
cotA = b/p = 3/4Answer
***********************************
Hope it helps you !!
Rajukumar111
Similar questions