If secA + tanA = p then find the value of cosec A . ❤
Answers
Answered by
743
secA+tanA=p ----------------------------(1)
∵, sec²A-tan²A=1
or, (secA+tanA)(secA-tanA)=1
or, secA-tanA=1/p -----------------------(2)
Subtracting (2) from (1) we get,
2tanA=p-1/p
or, tanA=(p²-1)/2p
∴, cotA=2p/(p²-1)
Now, cosec²A-cot²A=1
or, cosec²A=1+cot²A
or, cosec²A=1+{2p/(p²-1)}²
or, cosec²A=1+4p²/(p²-1)²
or, cosec²A=(p⁴-2p²+1+4p²)/(p²-1)²
or, cosec²A=(p⁴+2p²+1)/(p²-1)²
or, cosec²A=(p²+1)²/(p²-1)²
or, cosecA=(p²+1)/(p²-1)
∵, sec²A-tan²A=1
or, (secA+tanA)(secA-tanA)=1
or, secA-tanA=1/p -----------------------(2)
Subtracting (2) from (1) we get,
2tanA=p-1/p
or, tanA=(p²-1)/2p
∴, cotA=2p/(p²-1)
Now, cosec²A-cot²A=1
or, cosec²A=1+cot²A
or, cosec²A=1+{2p/(p²-1)}²
or, cosec²A=1+4p²/(p²-1)²
or, cosec²A=(p⁴-2p²+1+4p²)/(p²-1)²
or, cosec²A=(p⁴+2p²+1)/(p²-1)²
or, cosec²A=(p²+1)²/(p²-1)²
or, cosecA=(p²+1)/(p²-1)
Answered by
20
Answer:
Given :
sec A + tan A = p
I am replacing p by ' k '
sec A + tan A = k
We know :
sec A = H / B & tan A = P / B
H / B + P / B = k / 1
H + P / B = k / 1
So , B = 1
H + P = k
P = k - H
From pythagoras theorem :
H² = P² + B²
H² = ( H - k )² + 1
H² = H² + k² - 2 H k + 1
2 H k = k² + 1
H = k² + 1 / 2 k
P = k - H
P = k² - 1 / 2 k
Now write k = p we have :
Base = 1
Perpendicular P = P² - 1 / 2 P
Hypotenuse H = P² + 1 / 2 P
Value of cosec A = H / P
cosec A = P² + 1 / 2 P / P² - 1 / 2 P
cosec A = P² + 1 / P² - 1
Therefore , we got value .
Similar questions