If secA+tanA=p, then prove that sinA=
Answers
Answered by
1
Step-by-step explanation:
secA + tanA = p
squaring both sides
(secA + tanA)^2 = p^2
sec^2A + tan^2A + 2secA.tanA = p^2
1/cos^2A + sin^2A/cos^2A + 2sinA/cos^2A = p^2
Take cos^2A LCM
(1 + sin^2A + 2 sinA) / cos^2A = p^2
(cos^2A = 1 - sin^2A)
(1 + sinA)^2 / (1 - sin^2A) = p^2
(1 + sinA)^2 / (1 + sinA)(1 - sinA) = p^2
(1 + sinA) / (1 - sinA) = p^2
by cross multiplication
1 + sinA = p^2 - p^2.sinA
sinA + p^2.sinA = (p^2 - 1)
sinA(1 + p^2) = (p^2 - 1)
sinA = (p^2 - 1)/(1 + p^2)
Similar questions