Math, asked by SharmaShivam, 1 year ago

If secA=\frac{2}{\sqrt{3}}, then prove that \frac{tanA}{cosA}+\frac{1+sinA}{tanA}=\frac{4+9\sqrt{3}}{6}

Answers

Answered by abhi569
14
Given, secA = \dfrac{2}{\sqrt{3}}


secA = sec30°


A = 30°





Now,

\dfrac{tanA}{cosA}=tanA \times \dfrac{1}{cosA} \\ \\\\ \dfrac{tanA}{cosA}=tanAsecA


And, \dfrac{1+sinA}{tanA}=\dfrac{1}{tanA}+\dfrac{sinA}{tanA}


\dfrac{1+sinA}{tanA}= cotA + \dfrac{sin}{\dfrac{sinA}{cosA}}


\dfrac{1+sinA}{tanA}= cotA + cosA




Therefore,

\frac{tanA}{cosA}+\frac{1+sinA}{tanA} = tanA secA + cotA + secA



tanAsecA + cotA + cosA

tan30°\dfrac{2}{\sqrt{3}} + cot30 \degree + \dfrac{\sqrt{3}}{2}

\dfrac{2}{\sqrt{3}}  \dfrac{1}{\sqrt{3}} + \sqrt{3} + \dfrac{\sqrt{3}}{2}


 \frac{2}{3}  +  \frac{2 \sqrt{3}  +  \sqrt{3} }{2}  \\  \\  \\  \frac{4 + 9 \sqrt{3} }{6}




Hence, proved .
Answered by Anonymous
10
sec A = 2/√3

secA = sec30°

A = 30°



Since the value of angle A is 30°,




tanA / cosA = tan30° / cos30° = ( 1/√3)/(√3/2) = 2 / 3



( 1 + sinA ) / tanA = ( 1 + sin30 )/tan30° = { 1 + ( 1 / 2 ) } / ( 1/√3) = { ( 3/2)/(1/√3) = 3√3 / 2



therefore,




\frac{tanA}{cosA}+\frac{1+sinA}{tanA}= 2/3 + 3\sqrt{3} / 2



\frac{tanA}{cosA}+\frac{1+sinA}{tanA}=\dfrac{4+9\sqrt{3}}{6}



 \textsf{<br />Proved.<br />}
Similar questions