If sinΘ+2cosΘ=1,prove that 2sinΘ-cosΘ=2
Answers
Answered by
0
Sinθ+2cosθ=1
Squaring both sides,
sin²θ+2.sinθ.2cosθ+4cos²θ=1
or, (1-cos²θ)+4sinθcosθ+4(1-sin²θ)=1 [∵, sin²θ+cos²θ=1]
or, 1-cos²θ+4sinθcosθ+4-4sin²θ=1
or, -4sin²θ+4sinθcosθ-cos²θ=1-1-4
or, -(4sin²θ-4sinθcosθ+cos²θ)=-4
or, (2sinθ)²-2.2sinθcosθ+(cosθ)²=4
or, (2sinθ-cosθ)²=2²
or, 2sinθ-cosθ=2 (Proved)
Similar questions