If sin a = 1/√10, sin b = 1/√5, prove that a+b=π/4, a and b being positive acute angles.
Answers
Answered by
91
sin(a+b)= sinacosb+ cosasinb
Sina =1/root10
cosa= 3/root10(from pythogreas rule)
sinb= 1/root5
cosb= 2/root5
sin(a+b)= sinpi/4
sin(a+b)= 1/root2
now sin(a+b)= 1/root10 * 2/root5 + 3/root10 * 1/root5
= 2/5root2 + 3/5 root2
= 5/ 5root2
= 1/root2
sin(a+b) = sinpi/4 = 1/root2
therefore a+b = pi/4 is proved
Sina =1/root10
cosa= 3/root10(from pythogreas rule)
sinb= 1/root5
cosb= 2/root5
sin(a+b)= sinpi/4
sin(a+b)= 1/root2
now sin(a+b)= 1/root10 * 2/root5 + 3/root10 * 1/root5
= 2/5root2 + 3/5 root2
= 5/ 5root2
= 1/root2
sin(a+b) = sinpi/4 = 1/root2
therefore a+b = pi/4 is proved
Answered by
21
Answer:
sin(a+b)= sinacosb+ cosasinb
Sina =1/root10
cosa= 3/root10(from pythogreas rule)
sinb= 1/root5
cosb= 2/root5
sin(a+b)= sinpi/4
sin(a+b)= 1/root2
now sin(a+b)= 1/root10 * 2/root5 + 3/root10 * 1/root5
= 2/5root2 + 3/5 root2
= 5/ 5root2
= 1/root2
sin(a+b) = sinpi/4 = 1/root2
therefore a+b = pi/4 is proved
Similar questions