Math, asked by adideva98, 8 months ago

if sin A =⅓ evaluate tanA sec A​

Answers

Answered by asj71718
0

Step-by-step explanation:

In ∆ABC, sin A = 1/3

sin \: A \:   =  \frac{opposite \: }{hypotenuse} =  \frac{BC}{AC} =  \frac{1}{3}    \\

Therefore, BC = 1k and AC = 3k... Let k be a positive integer....

By Pythagoras theorem, AB

AB =  \sqrt{ {(AC)}^{2}  -   {(BC)}^{2}  }  \\

 =  >   \sqrt{ {(3k)}^{2}  -  {k}^{2} } \\  \\  =  >  \sqrt{9 {k}^{2}  -  {k}^{2} }  = \sqrt{8} k = 2 \sqrt{2} k

Therefore, AB = 2√2k

tan \: A  =  \frac{opp}{hyp}  =  \frac{BC}{AB}  =  \frac{k}{2 \sqrt{2}k }  =  \frac{1}{2 \sqrt{2} }  \\

sec \: A =  \frac{hyp}{adj}  =  \frac{AC}{AB}  =  \frac{3k}{2 \sqrt{2} k}  =  \frac{3}{2 \sqrt{2} }  \\

Mark as Brainliest....

Similar questions