Math, asked by tanvirraaz764, 1 year ago

If sin alpha=1/2,prove that(3cos alpha-4cos^3alpha)=0


minnie147: alpha = 30 degree
minnie147: put the values in the equation

Answers

Answered by aakashvoora
36

sin alpha=1/2,      RTP: 3cosalpha - 4 cos^3alpha = 0

Now,

since sin alpha is = 1/2

we know that

sin 30 = 1/2

so,

alpha = 30

now,

3 cos30 - 4 cos ^3 30

 => 3(root3)/2      -       4(root3/2)^3

 => 3 * root3/2    -       4(3 * root 3)/8

 => 12 *root3/8    -       12* root3/8                       [taking common denominator]

 => 0


aakashvoora: please mark as brainliest
Answered by sjain180
97

Given.

 \sin \alpha  =  \frac{1}{2}

To prove.

3 \cos \alpha  - 4 { \cos }^{3}  \alpha  = 0

Solution.

 \sin \alpha  =  \frac{1}{2}

⇒ \sin \alpha  =  \sin30° \:

⇒ \: \alpha  = 30° \:

Now, taking LHS,

3 \cos \alpha  - 4  { \cos }^{3}  \alpha  = 3 \cos30° \:   - 4 { \cos }^{3} 30° \:

 =  3( \frac{ \sqrt{3} }{2}) - 4 ({ \frac{ \sqrt{3} }{2} })^{3}

  = \frac{3 \sqrt{3} }{2} - 4( \frac{3 \sqrt{3} }{8} )

  = \frac{3 \sqrt{3} }{2} -  \frac{3 \sqrt{3} }{2}

 = 0

= RHS

∴ LHS = RHS

Hence, proved.

Please mark the BRAINLIEST.

CHEERS!

Similar questions