Math, asked by ayushseth9191, 1 year ago

If sinθ = cosθ, then find the value of 2tanθ + cos^2 θ.

Answers

Answered by Eustacia
13

 \sin( \alpha )  =  \cos( \alpha )  \\   \\  \alpha  =  \frac{\pi}{4}  \\  \\ y =  \: 2 \tan( \alpha )  +  { \cos }^{2}  \alpha   \\  \\ y = 2 \tan( \frac{\pi}{4} )  +  { \cos }^{2}  (\frac{\pi}{4} ) \\  \\ y = 2(1) +  ({ \frac{1}{ \sqrt{2} } )}^{2}  \\  \\   \:  \color{purple}\boxed{  y = 2 +  \frac{1}{2}  =  \bf \frac{5}{2} }

Eustacia: Yeah say
Eustacia: None of your business
Answered by HarshChaudhary0706
3

Answer:

Step-by-step explanation:

★ TRIGONOMETRIC REDUCTIONS ★

Given that :

Sin θ = Cos θ

Possible for only one set

θ = π / 4

Now , required value : 2Tanθ + Cos²θ

2 Tan45° + Cos²45°

2 ( 1 ) + 1/2

5/2

★✩★✩★✩★✩★✩★✩★✩★✩★✩★✩★

Similar questions