Math, asked by polibiswas51878, 11 months ago

if sin squared theta + b cos square theta equal to C . P sin square theta + cos square theta equal to r. prove that (b-c)(r-p)=(c-a)(q-r)

Answers

Answered by RvChaudharY50
278

Question :-

if a.sin²θ + b.cos²θ = c and p.sin²θ + q.cos²θ = r , Prove that, (b-c)(r-p) = (c-a)(q-r) ?

Solution :-

Given that,

→ a.sin²θ + b.cos²θ = c

→ a.sin²θ + b.cos²θ = c * 1

Putting 1 = sin²A + cos²A in RHS now,

→ a.sin²θ + b.cos²θ = c * (sin²θ + cos²θ)

→ a.sin²θ + b.cos²θ = c.sin²θ + c.cos²θ

→ b.cos²θ - c.cos²θ = c.sin²θ - a.sin²θ

→ cos²θ (b - c) = sin²θ (c - a)

→ (b - c)/(c - a) = (sin²θ/cos²θ)

using (sinA/cosA) = tanA Now,

→ tan²θ = (b - c)/(c - a) ---------- Eqn(1)

Similarly,

→ p.sin²θ + q.cos²θ = r * 1

→ p.sin²θ + q.cos²θ = r * (sin²θ + cos²θ)

→ p.sin²θ + q.cos²θ = r.sin²θ + r.cos²θ

→ q.cos²θ - r.cos²θ = r.sin²θ - p.sin²θ

→ cos²θ (q - r) = sin²θ (r - p)

→ (q - r)/(r - p) = (sin²θ/cos²θ)

using (sinA/cosA) = tanA Now,

→ tan²θ = (q - r)/(r - p) ---------- Eqn(2)

From Eqn. (1) & (2) we get,

→ (b - c)/(c - a) = (q - r)/(r - p)

Cross - Multiply,

(b - c) (r - p) = (c - a) (q - r) (Proved).

___________

Similar Question :-

If cos X=tanY cosY=tanZ cosZ =tanX then sinx=siny=sinz

https://brainly.in/question/19774901?utm_source=android&utm_medium=share&utm_campaign=question .

Similar questions