Math, asked by Anonymous, 7 months ago

If sin^{2} θ+2cos^{2} θ+3sin^{2} θ+4cos^{2} θ+......+ 40 terms = 405 where θ is acute then find the value of tan θ. ​

Answers

Answered by Anonymous
33

Solution:-

Given:-

 \rm  \implies \:  \sin {}^{2} \theta + 2 \cos^{2}  \theta + 3 \sin^{2} \theta + 4 \cos ^{2}  + ......... + 40 \:  \: terms = 405

Now separate Sin²θ and Cos²θ , We get

 \rm \implies \:  \sin^{2}  \theta + 3 \sin ^{2}\theta + 5 \sin^{2}  \theta + ........... + 39 \sin^{2}  \theta \:  \:  \:  \:  \:  \:  \:  \: ......(i)eq

Total Number of term ( n ) = 20

Now Take:-

 \rm \implies \:  \cos^{2} \theta + 2 \cos^{2}  \theta + 4 \cos^{2}  \theta  + ....... + 40 \cos^{2}\theta \:  \:  \:  \:  \:  \:  \: .........(ii)eq

Total Number of term ( n )= 20

Now we can write both equation as

 \rm \implies \sin^{2}\theta(1 + 3 + 5 + ....... + 39) \:  \:  \:  \:  \:  \:  \:  \:  \: ....(i)eq

 \rm \implies \cos^{2} \theta(2 + 4 + 6 + .......... + 40) \:  \:  \:  \:  \:  \:  \: ....(ii)eq

Now find Sum of the number of both equation

Formula:-

 \rm \to  \boxed{  \rm \: S_{n} =  \dfrac{n}{2} \{2a + (n - 1)d \} =  \dfrac{n}{2} (a + l)}

Now Take

\rm \implies \sin^{2}\theta(1 + 3 + 5 + ....... + 39) \:  \:  \:  \:  \:  \:  \:  \:  \: ....(i)eq

 \rm \implies \:  \sin ^{2}  \theta \bigg( \dfrac{20}{2}   \times  \{1 + 39 \} \bigg)

 \rm \implies \:  \sin^{2}  \theta(10  \times 40)

 \rm \implies \: 400 \sin^{2}  \theta

Now Take

 \rm \implies \cos^{2} \theta(2 + 4 + 6 + .......... + 40) \:  \:  \:  \:  \:  \:  \: ....(ii)eq

 \rm \implies \cos^{2}  \theta \bigg( \dfrac{20}{2}  \times  \{2 + 40 \} \bigg)

 \rm \implies \:  \cos^{2}  \theta (10 \times 42)

 \rm \implies420 \cos^{2}\theta

Its given Sum of term is 405

We can write as

 \rm \implies \: 400 \sin^{2}\theta + 420 \cos^{2}\theta = {405}

Now simplify

 \rm \implies \: 400 \sin {}^{2}  + 400 \cos ^{2} \theta + 20 \cos^{2}  \theta = 405

 \rm \implies \: 400( \sin^{2}  \theta +  \cos^{2}\theta) + 20 \cos {}^{2}  \theta = 405

 \rm \implies \: 400 + 20 \cos^{2}  \theta = 405

 \rm \implies \: 20 \cos {}^{2}  \theta = 405 - 400

 \rm \implies \cos^{2}  \theta =  \dfrac{5}{20}

 \rm \implies \cos^{2}  \theta =  \dfrac{1}{4}

\rm \implies \cos \theta =   \sqrt{ \dfrac{1}{4} }

\rm \implies \cos^{}  \theta = \pm  \dfrac{1}{2}

It give angle will be acute so we take

\rm \implies \cos^{}  \theta =  \dfrac{1}{2}

 \rm \implies \theta =  \cos^{ - 1}  \bigg( \dfrac{1}{2}  \bigg)

 \rm \implies \:  \theta =  \dfrac{\pi}{3}

We have to find value of Tanθ

 \rm \implies \tan\dfrac{\pi}{3}  =  \sqrt{3}

Answer

\rm \implies \tan\dfrac{\pi}{3}  =  \sqrt{3}


BrainlyIAS: Awesome :-) ♥
Anonymous: great !
Answered by Anonymous
9

sin2θ+cos2θ=1

sin2θ + b2cos2θ + 3sin2θ + 4cos2θ+....+40 terms = 405

⇒(sin2θ + 3sin2θ +... + 20bterms)+(2cos2θ+4cos2θ+...+20terms) = 405

⇒(1+3+5+...+20terms)+20cos2θ=405⇒202+20cos2θ=405⇒20cos2θ=5⇒cos2θ=41∴tanθ=3

Similar questions