If sin theta=12/13 then value of 2cos theta+3tan theta/sin theta+tan theta^sin theta
Answers
Answered by
9
Trigonometry problem
Given: sinθ = 12/13
To find: (2 cosθ + 3 tanθ)/(sinθ + tanθ)
Solution:
- Here, sinθ = 12/13
- Then, cosθ = √(1 - sin²θ), since sin²A + cos²A = 1
- or, cosθ = √{1 - (12/13)²}
- or, cosθ = √(1 - 144/169)
- or, cosθ = √{(169 - 144)/169}
- or, cosθ = √(25/169)
- or, cosθ = 5/13
So, tanθ = sinθ/cosθ
or, tanθ = 12/5
∴ (2 cosθ + 3 tanθ)/(sinθ + tanθ)
= (2 * 5/13 + 3 * 12/5) / (12/13 + 12/5)
= (10/13 + 36/5) / (12/13 + 12/5)
= {(50 + 468)/65} / {(60 + 156)/65}
= 518/216
= 259/108
Answer: (2 cosθ + 3 tanθ)/(sinθ + tanθ) = 259/108 .
Similar questions