Math, asked by 112585548535888, 1 year ago

If sin theta=3/5 then cos theta where theta is in first quadrant.

Answers

Answered by Abhijeet11111111
32
I hope it will help u
Attachments:

Adeebkhan: Thank you sir ji
Answered by pinquancaro
24

Answer:

\cos\theta=\frac{4}{5}

Step-by-step explanation:

Given : \sin\theta=\frac{3}{5}

To find : The value of \cos\theta where \theta is in first quadrant ?

Solution :

\sin\theta=\frac{3}{5}

Applying trigonometric identity,

\sin^2\theta+\cos^2\theta=1

(\frac{3}{5})^2+\cos^2\theta=1

\frac{9}{25}+\cos^2\theta=1

\cos^2\theta=1-\frac{9}{25}

\cos^2\theta=\frac{25-9}{25}

\cos^2\theta=\frac{16}{25}

\cos\theta=\frac{4}{5},-\frac{4}{5}

In first quadrant \cos\theta is always positive.

Therefore, \cos\theta=\frac{4}{5}

Similar questions