Math, asked by bv094948, 9 months ago

if sin theta= 4/5 then find 1- tan theta /1+tan theta ​

Answers

Answered by Anonymous
3

Answer:

\sf{The \ value \ of \ \dfrac{1-tan\theta}{1+tan\theta} \ is \ \dfrac{-1}{7}.}

Given:

  • \sf{sin\theta=\dfrac{4}{5}}

To find:

  • \sf{The \ value \ of \ \dfrac{1-tan\theta}{1+tan\theta}}

Solution:

\sf{sin^{2}\theta+cos^{2}\theta=1}

\sf{... Trigonometric \ identity}

\sf{\therefore{cos^{2}\theta=1-sin^{2}\theta}}

\sf{\therefore{cos^{2}\theta=1-(\dfrac{4}{5})^{2}}}

\sf{\therefore{cos^{2}\theta=1-\dfrac{16}{25}}}

\sf{\therefore{cos^{2}\theta=\dfrac{25-16}{25}}}

\sf{\therefore{cos^{2}\theta=\dfrac{9}{25}}}

\sf{\therefore{cos\theta=\dfrac{3}{5}}}

\sf{tan\theta=\dfrac{sin\theta}{cos\theta}}

\sf{\therefore{tan\theta=\dfrac{\frac{4}{5}}{\frac{3}{5}}}}

\sf{\therefore{tan\theta=\dfrac{4}{3}}}

\sf{\leadsto{\dfrac{1-tan\theta}{1+\tan\theta}}}

\sf{\leadsto{\dfrac{1-\frac{4}{3}}{1+\frac{4}{3}}}}

\sf{\leadsto{\dfrac{\frac{3-4}{3}}{\frac{3+4}{3}}}}

\sf{\leadsto{\dfrac{-1}{3}\times\dfrac{3}{7}}}

\sf{\leadsto{\dfrac{-1}{7}}}

\sf\purple{\tt{\therefore{The \ value \ of \ \dfrac{1-tan\theta}{1+tan\theta} \ is \ \dfrac{-1}{7}.}}}

Answered by Anonymous
2

\bf\huge\blue{\underline{\underline{ Question : }}}

If sin θ = 4/5, then find 1 - tan θ/1 + tan θ

\bf\huge\blue{\underline{\underline{ Solution : }}}

Given that,

  • sin θ = 4/5

To find,

  • 1 - tan θ/1 + tan θ

Let,

We know that,

\tt \rightarrow  \sin \theta =  \cfrac{ Opposite}{ Hypotenuse } = \cfrac{4}{5}

So,

  • AC = 5 cm.
  • BC = 4 cm.
  • AB = ?

By using Pythagoras Theorem, we get the value of AC.

Pythagoras Theorem :

➡ (Hypotenuse)² = (Side)² + (Side)²

\sf \leadsto (AC)^{2} = (AB)^{2} + (BC)^{2}

\sf \leadsto (5)^{2} = (AB)^{2} + (4)^{2}

\sf \leadsto 25 = (AB)^{2} + 16

\sf \leadsto  (AB)^{2} = 25-16

\sf \leadsto  (AB)^{2} = 9

\sf \leadsto  (AB)= \sqrt{9}

\sf \leadsto  (AB)= 3

Now,

We can find out the value of 1 - tan θ/1 + tan θ

\sf \implies \tan\:\theta = \cfrac{ Opposite}{ Adjacent }

\sf \implies \tan\:\theta = \cfrac{ BC}{AB}

\sf \implies \tan\:\theta = \cfrac{ 4}{3}

  • Now, substitute value of tan θ.

\sf \implies \cfrac{ 1 - \frac{4}{3}}{1+\frac{4}{3}}

\sf \implies \cfrac{\frac{3 - 4}{3}}{\frac{3+4}{3}}

\sf \implies \cfrac{-1}{\cancel{3}} \times \cfrac{\cancel{3}}{7}

\sf \implies \cfrac{-1}{7}

\underline{\boxed{\rm{\purple{\therefore Hence,\:the\:value\:of\:\cfrac{1 - \tan\:\theta}{1+\tan\:\theta}=\cfrac{-1}{7}.}}}}\:\orange{\bigstar}

More Information,

\boxed{\begin{minipage}{7 cm}  Trigonometric Identities : \\ \\$\sin^{2}\theta + cos^{2}\theta = 1 \\ \\ 1 + tan^{2}\theta = sec^{2}\theta \\ \\1 + cot^{2}\theta=\text{cosec}^2\, \theta$ \end{minipage}}

______________________________________________________

Attachments:
Similar questions