If sin theta + cos theta is root 2 sin (90 - theta) then what is the value of cos theta
Answers
Answered by
5
ANSWER;
Given
sinθ + cosθ = √2 sin(90° - θ)
sinθ + cosθ = √2 cosθ
Squaring on both sides
(sinθ + cosθ)² = (√2)²(cosθ)²
Using
(a + b)² = a² + b² + 2ab
sin²θ + cos²θ + 2sinθcosθ = 2cos²θ
1 = 2cos²θ - 2sinθcosθ
2cos²θ - 2sinθcosθ - 1 = 0
2cos²θ - 1 - 2sinθcosθ = 0
We know that
2cos²θ - 1 = cos(2θ)
2sinθcosθ = sin(2θ)
cos(2θ) - sin(2θ) = 0
cos²θ - sin²θ - 2sinθcosθ = 0
(cosθ - sinθ)² = 0
cosθ - sinθ = 0
cosθ = sinθ
Hence cosθ = sinθ
MORE INFORMATION:
→ sin²θ + cos²θ = 1
→ sec²θ - tan²θ = 1
→ cosec²θ - cot²θ = 1
→ sin(2θ) = 2sinθcosθ
→ cos(2θ) = cos²θ - sin²θ
CONCEPTS USED:
→ Trigonometric ratios
→ Trigonometric identities
→ Trigonometric ratios of allied angles
→ Trigonometric ratios of multiples & submultiples
Similar questions
Social Sciences,
5 months ago
English,
5 months ago
English,
5 months ago
Math,
10 months ago
Accountancy,
10 months ago
Physics,
1 year ago