If sin theta = m/n, Find the value of tan theta +4/4cot theta + 1
Answers
Answered by
124
sinθ=m/n
∴, cosθ=√1-sin²θ=√1-m²/n²=√(n²-m²)/n²=√(n²-m²)/n
∴,tanθ=sinθ/cosθ=m/√(n²-m²)
cotθ=1/tanθ=√(n²-m²)/m
∴, (tanθ+4)/(4cotθ+1)
=[m/√(n²-m²)+4]/[4√(n²-m²)/m+1]
=[{m+4√(n²-m²)}/√(n²-m²)]/[{4√(n²-m²)+m}/m]
={m+4√(n²-m²)}/√(n²-m²)×m/{m+4√(n²-m²}
=m/√(n²-m²)
∴, cosθ=√1-sin²θ=√1-m²/n²=√(n²-m²)/n²=√(n²-m²)/n
∴,tanθ=sinθ/cosθ=m/√(n²-m²)
cotθ=1/tanθ=√(n²-m²)/m
∴, (tanθ+4)/(4cotθ+1)
=[m/√(n²-m²)+4]/[4√(n²-m²)/m+1]
=[{m+4√(n²-m²)}/√(n²-m²)]/[{4√(n²-m²)+m}/m]
={m+4√(n²-m²)}/√(n²-m²)×m/{m+4√(n²-m²}
=m/√(n²-m²)
Answered by
61
Given:
Solution:
We know that,
From question,
Similar questions