CBSE BOARD X, asked by NP24, 8 months ago

If sin theta = m/n, then evaluate tan theta + 4 / 4cot theta + 1​

Answers

Answered by jiteshjain927
2

Explanation:

=n2−m2m

Given:

\frac{\tan \theta+4}{4 \cot \theta+1}4cotθ+1tanθ+4

Solution:

\frac{\tan \theta + 4}{4 \cot \theta + 1}4cotθ+1tanθ+4

\Rightarrow \frac{\tan \theta\left(1 + \frac{4}{\tan \theta}\right)}{4 \cot \theta + 1}⇒4cotθ+1tanθ(1+tanθ4)

\Rightarrow \frac{\tan \theta(1 + 4 \cot \theta)}{4 \cot \theta + 1}⇒4cotθ+1tanθ(1+4cotθ)

\Rightarrow \tan \theta⇒tanθ

We know that,

\tan \theta=\frac{\sin \theta}{\cos \theta}tanθ=cosθsinθ

\Rightarrow \frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}⇒1−sin2θsinθ

From question,

\sin \theta=\frac{m}{n}sinθ=nm

\Rightarrow \frac{\frac{m}{n}}{\sqrt{1 - \left(\frac{m}{n}\right)^{2}}}⇒1−(nm)2nm

\Rightarrow \frac{\frac{m}{n}}{\sqrt{\frac{n^{2} - m^{2}}{n^{2}}}}⇒n2n2−m2nm

\Rightarrow \frac{\frac{m}{n}}{\sqrt{\frac{(n - m)(n + m)}{n^{2}}}}⇒n2(n−m)(n+m)nm

\Rightarrow \frac{m}{n} \times \frac{n}{\sqrt{(n - m)(n + m)}}⇒nm×(n−m)(n+m)n

\Rightarrow \frac{m}{\sqrt{(n - m)(n + m)}}⇒(n−m)(n+m)m

\frac{\tan \theta + 4}{4 \cot \theta + 1}=\frac{m}{\sqrt{n^{2} - m^{2}}}4cotθ+1tanθ+4=n2−m2

Answered by ashauthiras
3

Answer:

sinθ=m/n

∴, cosθ=√1-sin²θ=√1-m²/n²=√(n²-m²)/n²=√(n²-m²)/n

∴,tanθ=sinθ/cosθ=m/√(n²-m²)

cotθ=1/tanθ=√(n²-m²)/m

∴, (tanθ+4)/(4cotθ+1)

=[m/√(n²-m²)+4]/[4√(n²-m²)/m+1]

=[{m+4√(n²-m²)}/√(n²-m²)]/[{4√(n²-m²)+m}/m]

={m+4√(n²-m²)}/√(n²-m²)×m/{m+4√(n²-m²}

=m/√(n²-m²)

Explanation:

Similar questions