Math, asked by israr68, 1 year ago

If sin theta = under root 3 / 2, show that 4 cos 3 theta - 3 cos theta = - 1.

Answers

Answered by fanbruhh
24

 \huge \bf \red{ \mid{ \overline{ \underline{ANSWER}}} \mid}

 \bf{GIVEN \colon - }

 \bf{sin \theta \:  =   \frac{ \sqrt{3} }{2}}

 \bf{TO  \:  \: PROVE \colon  - }

 \bf{4 \cos ^{3} \theta} - 3 \cos \theta =  - 1

SOLVING LHS

→ As we know

 \bf{ sin \theta \:  =  \frac{prependicular}{hypotenuse}}

Hence

→ perpendicular = √3 units

→ hypotenuse = 2 units

so , let's find base

According to Pythagoreas theorem

» (hypotenuse)² = (perpendicular)² + (base)²

Hence

» (base)² = (perpendicular)² -(hypotenuse)²

» (base)² = (2)² - (√3)²

» (base)² = 4 - 3

→ base = √1

→ base = 1 unit

Hence

 \bf{  \cos \theta \:   =  \frac{base}{hypotenuse}}  \\  \\  \bf \implies  \cos \theta =  \frac{1}{2}

now put the value and get the result

 \bf \implies \: 4 \times  (\frac{1}{2} ) ^{3}  - 3 \times  \frac{1}{2}

 \bf \implies \: 4 \times  \frac{1}{8}  -  \frac{3}{2}

  \huge \bf \implies  \frac{1}{2}  -  \frac{3}{2}  \\  \\  \huge \bf \implies \:  \frac{  1 - 3}{2}  \\  \\  \huge \bf \implies \:  \frac{ - 2}{2}  \\  \\  \huge \tt \implies \:  - 1

 \huge \sf{LHS = RHS}

HENCE PROVED ★


Cutiepie93: Hii deadman... Inbox pls
fanbruhh: yea
Answered by sangeeta8574420871
0

Answer:

Step-by-step explanation:

Similar questions